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example, consider convolution with the interval integration
kernel,

h(x) = 1, xe0,1],
0, otherwise,

followed by sampling at unit intervals. This system will
clearly have flat basis function power, since the power of
each basis function is one over its interval, and the functions
do not overlap. But this set is not shiftable, since the kernel
spectrum is infinite in extent and, therefore, the sampling of
the basis set introduces aliasing.

C. Shiftability in Orientation

We can apply the concept of shiftability to the continuous
shifting of orientation. Given a set of basis functions centered
at the same spatial location and scale, and tuned to a finite
number of orientations, we wish to interpolate measurements
at all orientations. This problem has been studied in detail by
Freeman and Adelson [15], who described ‘a general frame-
work for continuously rotating filters. They discuss the num-
ber of rotated basis functions required to ‘‘steer’” a given
filter (i.e., the number of samples in the orientation domain),
and derive the interpolation formula given in (5).

To illustrate this idea, consider the set of directional
derivatives of a two-dimensional radially symmetric function,
c(r), where r = \/x2 4+ y* is the radial coordinate. The
directional derivative of this function at orientation 8, is
written as

Dga[c(r)] =cos (8 — 0,)c(r),

where 0 is the angular coordinate and ¢’(r) = (d/dr)[c(r)],
the derivative of ¢(r) with respect to its argument. Note that
this function is polar separable, a product of angular and
radial component functions. Using standard trigonometric
relations, we can rewrite this expression in the form of the
shiftability constraint in (6):

cos (0 — 0,)c’(r) = cos(8,) cos (8)c’(r)
+ sin(6,) sin (8)c’(r)

cos (6,)[cos (8)c’(r)]

+ sin(é)a)[cos (0 - g)c’(r)].

Thus, the rotation of the directional derivative to an arbitrary
angle, 6,, may be computed as a linear combination of the
directional derivative basis functions at angles 0 and 7 /2 (in
brackets). The basis set composed of these two derivatives is
shiftable in orientation.

We can also consider steerability in the Fourier domain:
That is, the steerability of the Fourier transforms of the
basis functions. The steerability condition is easiest to state
for polar-separable functions. Assume that the frequency

593

domain function V(w,,w,) may be written separably in
polar coordinates as

V(r,0) = H(0)U(r),

where r and 6 are the polar coordinates of the frequency
domain. H(#) is clearly periodic (with period 2=), and
shifting this function with respect to its argument corresponds
to rotating the two-dimensional basis function V(w,, w,).
Thus, shiftability of H(#) corresponds to ‘‘steerability’’ of
V(wy, w,). The shiftability constraint is now written in terms
of the Fourier components of the function H(#). Assuming
that the transform basis set is composed of rotations of this
function at a sufficient number of angles, the interpolation
(steering) functions may be derived from (5).

In general, we may also consider orientation shiftability of
functions that are not polar-separable. We write the function
in terms of a family of angular functions, H,(9):

V(r,0) = H(6)U(r).

Recall that the shiftability constraint in equation (5) depends
only on which frequency components of the function are
nonzero; it does not depend on the magnitude of those
components. Therefore, we can express the shiftability con-
straint in terms of the union of the nonzero frequency compo-
nents of H,(0) for all r.

Analogous to the case of position shiftability, orientation
shiftability ensures that the sum of the squares of the trans-
form coeficients at a given location and scale will be invari-
ant under changes in the input image orientation. Consider,
for example, a sinusoidal input of spatial frequency «,, with
unit amplitude. If we rotate the input about a point (i.e.,
modify the angular coordinate of ), the response power
(sum of squares of the coeflicients) at that point will not
change.

D. Shiftability in Scale

Application of the shiftability concept to scale is more
difficult both because of the symmetry constraints, and be-
cause we want to express the parameter on a logarithmic
axis. For simplicity, we consider functions that are purely
symmetric or anti-symmetric about the origin in the fre-
quency domain. We handle this symmetry constraint by
constructing a reflection-shiftable function.

Proposition 3: Consider a shiftable representation based
on function H(r), with interpolation functions b,(r,). Then
we can compute the function U (r,r,))=H(r—r,) £
H(—r —r,) from the set of functions U,(r,nA,) =
H(r —nA,)) + H(-r - na,), ne{0--- N— 1}, using
the same interpolation functions. We say that U_(r,r,) is
reflection-shiftable.

Proof: The proof is simple. We assume H(r) is
shiftable:

H(r-r,) = XH: b,(r,)H(r — na,).
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Then,
U,(r,r,)=H(r-r,)+tH(-r—-r,)
= Z bn(ra)H(r - IIA,)
n
+ Z bn(ro)H("r - nAr)
n
=Y b,(r,)[H(r-na,) £ H(-r - nA,)]
n
= z bn(ro)Ui(r’ nAr)'
n
This is the desired result.? O

Typically, signals of interest will be bandlimited, and,
thus, we can limit our domain to a particular range: re
[~ @nax, @max]- Since we have developed our discussion of
shiftability in the context of periodic signals, we can make
the domain periodic by identifying the endpoints. We will use
this approach in designing a scalable transform in Section IV.

The only remaining problem is that the reflection-shiftable
kernels previously described correspond to equal-width fre-
quency subbands. Consider a set of basis functions corre-
sponding to dilations of a common kernel. The fourier trans-
forms of these basis functions will be shifted copies of the
kernel transform in log frequency. Thus, we would like to
have frequency subbands that are of equal size on a logarith-
mic axis. To accomplish this, we note that the shiftability
property is not affected by ‘‘warping’’ the domain. For
example, if we assume that

U(r, ) = L b(ro)U(r, na,),

then clearly

U(e(r).r,)

2 bu(r)U(p(r), na,),

n

where p(r) is any warping function. Note that this warping
operation will not affect the flat power property (i.e., Corol-
lary 1) of the basis functions.

Since we are interested in functions that are tuned for
scale, the p(r) = log(r) is the correct warping function. In
this case, the singularity at the origin presents a problem and
so it is necessary to modify the function near the origin. This
does not affect the shiftability of the basis functions; it does,
however, mean that they are not precisely related by dilation
operations. An example (modified) log function is illustrated
in Fig. 4. In Section IV, we develop a one-dimensional
‘‘scalable’’ (i.e., shiftable in scale) transform using a loga-
rithmic warping function.

E. Joint Shiftability

In the previous sections, we considered shiftability of
several transform parameters independently. It is natural to
ask whether a transform can be simultaneously shiftable in

? Note that the flat basis power condition described in Corollary 1 will
only be met if we include both the symmetric and the anti-symmetric basis
functions when computing the power. That is, the sum ¥ ,[U,(r, nA,)? +
U_(r, nA,)Z] =23 [H(r - nA,)2 + H(-r — nA,)Z] will be constant
if H(r) is shiftable.
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Fig. 4. [Illustration of the use of a warping function. The function is a
modified logarithm: for argument values near the origin it is linear. Along
the top are the set of warped subbands. Kernels corresponding to these
subbands are only approximately related by dilations: modification near the
origin prevents them from being exact. Along the left is a shiftable set of
functions. The same interpolation functions for the shiftable set may be used
to shift the warped functions along the warped frequency axis.

several parameters. By this, we mean the representation is
shiftable in each parameter while all other parameters are
held fixed. For different applications, it may be desirable to
design transforms that are shiftable in different subsets of
parameters. We discuss some of the basic issues in joint
shiftability; a full analysis of the topic is beyond the scope of
this paper.

We first note that for parameters that are independent, joint
shiftability can be achieved. For example, one can create a
two-dimensional transform that is shiftable in both x and y
position. These two parameters may be treated indepen-
dently, and the shifting may be performed separably. As an
example of this, in Section V we discuss the implementation
of a transform that is jointly shiftable in two-dimensional
position and orientation.

If, however, we consider parameters that are Fourier
complements of each other, there are difficulties. For exam-
ple, consider a one-dimensional transform with basis func-
tions parameterized for position and scale. Position shiftabil-
ity (with spatial subsampling) requires the basis functions to
have limited bandwidth (regions of support) in the Fourier
domain. This would imply that the basis functions had infinite
spatial regions of support in the spatial domain. On the other
hand, scale shiftability (with scale subsampling) requires
them to have compact regions of support in the spatial
domain. Thus it is impossible to design a transform that is
subsampled in two Fourier complementary domains, and
shiftable in both of those domains.

It should now be clear that the critical sampling of orthog-
onal wavelet transforms prevents them from being shiftable
in both position and scale. If we use an ideal (sinc) kernel in
a dyadic wavelet transform, the subbands will be spatially
shiftable. But they will be infinite in spatial extent and highly
non-shiftable in scale.

There are several possible solutions to this dilemma. The
simplest is to maintain full resolution in one of the parame-
ters. In this case, there are no compactness restrictions on the
complementary parameter. For subband transforms, this in-
efficiency may be unacceptable for many applications. Note,
however, that the Fourier basis itself may be considered to be
jointly shiftable in this sense. For each frequency o there are
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two spatially translated basis functions (sin (wx) and
cos (wx)). Each of these pairs is shiftable (one can compute a
sinusoid of this frequency at any phase from these two basis
functions). The transform is maintained at full density in the
frequency domain (by definition), and so is trivially shiftable
there.

This example also suggests a connection between the
shiftability concept and eigensystem analysis. The Fourier
basis functions are the eigenfunctions of the translation opera-
tor, when the basis functions are considered as complex
pairs. This means that the two-dimensional subspace spanned
by the two basis functions of a given frequency is invariant
under translations. Analogously, a set of basis functions
shiftable in a parameter forms a multidimensional eigenfunc-
tion for translations with respect to that parameter. The space
spanned by these basis functions is invariant to modifications
of the parameter.

Returning to the issue of joint shiftability, one can also
consider nonseparable shiftability, in which the interpolation
of a point in the parameter space is based on a set of sample
points not restricted to variations of a single parameter. In
this case, the interpolation functions are multi-dimensional.
This is true, for example, in a wavelet transform: One can
interpolate any point in the scale-position parameter space
from a set of surrounding scale and position samples. This
was done in a recent paper by Gopinath and Burrus [18]. In
the present paper, however, we have emphasized the advan-
tages of being able to shift independently, so that one param-
eter may be shifted while holding all others fixed. This
property is important in many signal analysis applications, as
we discuss in later sections.

Another alternative is to design an approximately shiftable
representation. This would require introduction of a measure
of joint nonshiftability (joint aliasing); basis functions could
then be designed to minimize this measure, given a fixed
sampling structure. Note that such a measure would necessar-
ily be a measure of joint localization, as in Gabor’s work.
But since it would be based on region of support, it would
lead to different sets of ‘‘optimal’’ basis functions. Note also
that this measure would be dependent on the sampling density
chosen: the joint shiftability constraint becomes less restric-
tive as one increases the number of transform samples.

Finally, given that joint shiftability is impossible to achieve
in a pair Fourier complementary domains, we can also
consider relaxing the shiftability constraint in one of the
domains. In particular, we can replace the shiftability con-
straint in one domain by the less restrictive constraint that the
basis function power is flat (see Corollary 1). In the next
section, we show that this will result in a self-invertible
transform.

F. Self-Invertibility

Orthonormal transforms are self-inverting, but self-invert-
ing transforms need not be orthonormal. As we stated in
Section II orthonormality is the combination of self-inversion
and linear independence. One can construct transforms which
are self-inverting, yet overcomplete. Daubechies has termed
these ‘‘tight frames’” [8].
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A trivial example serves to demonstrate that such trans-
forms exist. A nonorthogonal, self-inverting transform may
be formed from any orthogonal transform by duplicating
every projection function and dividing the kernel weights by
a factor of V2 . The result is an over-complete representation
in which each pair of identical projection functions encodes
the same information. But the transform remains self-invert-
ing: the basis and projection functions are identical. A less
trivial example of an overcomplete self-inverting transform
based on an overcomplete Gabor set is described by Simon-
celli [39]. The ‘“‘cortex’’ transform developed by Watson
[47] is another example of an overcomplete self-inverting
transform. The overcomplete steerable pyramid described in
Section V is also a self-inverting transform.

Intuitively, the importance of self-invertibility is that it
ascribes a natural meaning to the transform coefficients. Each
coefficient is computed using a projection function with a
particular position and shape in both the spatial and fre-
quency domains. The basis functions used to invert the
transform are the same. This can be important for many
applications, such as data compression and image enhance-
ment. Without this property, errors introduced by nonlinear
processing of the coefficients will spread to locations and
frequencies other than those that were used to compute the
coeflicients.

In previous sections, we have concentrated on one trans-
form parameter at a time. Now we must consider the trans-
form as a whole. We restrict our attention to the class of
transforms that may be described by analysis/synthesis filter
banks, as illustrated in Fig. 5. In fact, this structure is
general enough to represent any linear transform, but we will
have in mind a subband transform such as the wavelet
transform.

As before, we will assume that the input signal, f(x), is
periodic with period 2 =. In addition, we will need to assume
that the input signal is band-limited to a finite range of
frequencies, k€[ —Kk > Kmax]- In the system depicted in
Fig. 5, the input signal is convolved with a set of M kernels,
h,(x). The index, m, corresponds to the frequency subband
of the kernel. The output of each convolution is sampled at
N,, points at intervals of 2« /N,,. This produces a set of
transform coefficient sequences, y, [ n].

In the synthesis section, the coefficients are reconstituted as
a continuous signal by attaching them to Dirac delta functions
at the proper sample locations. That is, from the discrete
signal y,[n], we form a continuous signal +,(x) =
Z,,N':”alym[n] - 6(x — nA,). These signals are then con-
volved with the space-reversed kernels, g,,(—x). The nega-
tion of the argument allows us to be consistent about the
definitions of basis and projection functions. Given this struc-
ture, we can show the following.

Proposition 4: A subband transform that is spatially
shiftable in each subband and exhibits flat basis function
power in the complementary Fourier domain over all fre-
quencies of interest is self-inverting.

Proof: The proof is by construction in one dimension;
the extension to higher dimensions is straightforward. We
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y,[n]
A|=2n/N,l — A,:Zn/N,H g(x)

1
gt IR B

Fig. 5. Analysis/synthesis filter bank.

By (x)

assume that the conditions of the proposition hold, and that
the projection filters are equal to the basis filters: g,(x) =
h,(x). Then we must show that the system in Fig. 5 is an
identity system. )

Using (8), the output of the entire system may be written
in the frequency domain

F(k)

M—1[Np—1
> H,(k+IN,) F(k+ le)]Hm(—k)
/=0

= —~ Hm(k)Hm(_k) F(k)
+MZ:' Ni_f’Hm(kJr IN,) H,(~k)F(k + IN,,).

(12)

The second sum in this equation is the aliasing term. Since
we are assuming that the system is shiftable (aliasing-free) in
the spatial domain, the second sum evaluates to zero. The
remaining (shift-invariant) system response is then

A0 = | S a0 |- (o).

Now, if the set of H,,(k) are designed to have flat power as
in (11), then

M=1 ,
> |H, (k)| =c, forall k.
m=0

If we impose the additional requirement that the value of the
constant ¢ is unity (this is just an adjustment of the normal-
ization of the basis functions), then the overall system re-
sponse will be unity, and the representation is self-inverting.

O

We will use this result in Section V to construct a self-
inverting pyramid transform that is shiftable in space and
orientation.

IV. A ONE-DIMENSIONAL EXAMPLE

In this section, we describe a one-dimensional transform
that is approximately shiftable in scale and position and we
use it in a simple example application. We designed a
shiftable function, H(r), by fitting an inverted parabola with
one period of a five-term Fourier series. We then constructed
a set of six (frequency domain) basis functions, U(r, nx /3),

1.0

0.8

0.6

04

02

0.0
3 2 -1 0 1 2 3

Fig. 6. Frequency response of two of the scale basis functions (inner and
outer curves), along with the frequency response of an interpolated basis
function.

using the techniques described in the previous section. In
particular, we warped the frequency axis using a modified
log function:

p(r) =sgn(r) -log(a|r| +1),

where « is a normalization factor o = (e™ — 1)/ w. This
modification to the log function allows us to handle the
singularity at the origin. It does not effect the shiftability of
the basis functions, although the basis functions will no
longer be exact dilations of each other.

To form a basis set, we combined the warped functions in
a reflection-symmetric manner:

oo )<l o0~ )

ne{-2,-1,0,1,2}.

Two of the basis functions, whose Fourier transforms are
tuned for different frequency octaves, are illustrated in Fig.
6. We also show a basis function that has been interpolated
(shifted) to an intermediate scale. The kernels used for
convolution in the spatial domain are computed as the Fourier
transforms of the U(r, nx /3).

A. Scale-Space Decomposition

To illustrate the use of this set of scalable filters discussed
in the previous section, we show an efficient calculation of a
‘“‘scale-space’’ image [48]. Ordinarily, this calculation would
require convolution of the signal with a large battery of
filters, each tuned for a slightly different scale. The property
of scale shiftability allows us to efficiently compute the signal
at all scales, using only a small set of filters.

We first convolve a one-dimensional signal with each of
our scale filters, producing a set of six one-dimensional
signals y,(x), ne{0,1,---,5}. As mentioned in the previ-
ous section, we must retain the full sampling density of the
convolution operations in order for the subbands to be spa-
tially shiftable. We computed a set of interpolation functions
using (5), and interpolated a set of one-dimensional signals at
intermediate scales by taking a weighted combination of the
Yu(X).

The results for a fractal signal are shown in Fig. 7. We
show the original signal (a) and four of the six ‘‘basis’’
signals computed by convolving with each of the basis filters
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(@)

(b)
(d)

()

I

Fig. 7.
resulting from applying each of the scale basis filters to the
“‘scale-space’’ image (see text).

(b)-(e). From the set of basis signals, we can interpolate a
scale signal at any intermediate scale. To illustrate this, we
interpolated scale signals at 128 different scales ranging from
that of the lowest-frequency basis scale to the highest-
frequency basis scale. These were pasted together as the scan
lines of a two-dimensional ‘‘scale-space’’ image, in which
the horizontal axis corresponds to spatial position, and the
vertical axis corresponds to scale. We then applied a simple
zero-crossing detector to this image. Fig. 7(f) shows the
zero-crossings of the scale-space function. Note that the

Example scale-space decomposition. (a) Original signal, Brownian fractal. (b)-(e) Four of the six ‘‘scale signals”

original fractal signal. (f) Zero-crossings of the interpolated

horizontal density of zero-crossings decreases as the scale
becomes coarser.

V. Two-DIMENSIONAL ExAMPLE: A STEERABLE PYRAMID

We have designed and implemented a two-dimensional
transform that is jointly shiftable in orientation and position
(see also [15]). The basis functions are translations, dilations,
and rotations of a single kernel, and the transform is con-
structed as a recursive pyramid. Fig. 8 contains an illustra-
tion of the frequency domain decomposition performed by
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Fig. 8. [Illustration of the spectral decomposition performed by the steer-
able pyramid. Basis functions are related by dilations and rotations (except
for the inner lowpass subband, and the outer residual subband).

the transform. Shiftability in scale was not needed for our
intended applications, and is not a property of this transform.
Our transform does, however, have flat basis power in the
scale domain, thus, it is self-inverting (see Corollary 1).
Because it is shiftable in orientation, we call it a ‘‘steerable
pyramid.”’

Fig. 9(a) illustrates the orientation-shiftable basis filters at
one scale of the pyramid. The design of the filters is de-
scribed in the next section. The rest of the figure shows the
decomposition of a simple test image. Unlike the orthogonal
pyramids based on QMF filter banks, the steerable pyramid
is significantly overcomplete: there are 16/3 times as many
coefficients in the representation as in the original image. The
overcompleteness limits the computational efficiency but in-
creases its usefulness for many image processing and analysis
tasks, as we will show in Section VI.

A. Pyramid (Radial Frequency) Implementation

We used a polar-separable frequency domain design strat-
egy for the filters of the transform. In this section, we
described the radial frequency (scale) portion of the design.

Pyramid algorithms are based on recursive application of
filtering and subsampling operations. Typically, the input
signal is partitioned into low- and high-pass portions, the
low-pass portion is subsampled, and the subdivision is re-
peated recursively. The high-pass portion may be subsampled
as in wavelet pyramids, or left at full density as in the
Laplacian pyramid [5]. A single stage of the transform may
be written in the form of a standard analysis/synthesis filter
bank [41] (although the Laplacian pyramid is typically not
implemented using this architecture). The filters are chosen
such that this single-stage system behaves like an identity
operation. The pyramid structure is achieved by applying this
single-stage transform recursively to the low-pass subband of
the previous single-stage transform.

In the present case, we wish to subdivide the signal into
low-pass and bandpass portions. To achieve this decomposi-
tion, we have implemented a novel pyramid architecture, in
which the response of the single-stage system (and therefore
the entire pyramid) is low-pass. The block diagram defining
the pyramid recursion is shown in Fig. 10. The input signal
is convolved with a bandpass kernel, B(w), and a low-pass
kernel L,(w). To ensure that there is no aliasing in the
bandpass portion, it is not subsampled. The low-pass portion
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is subsampled by a factor of two, and then convolved with
another low-pass kernel, Ly(w).

Using standard signal processing results, and assuming that
the subsampling of the low-pass branch introduces negligible
aliasing, we write the response of the system of Fig. 10 as

S(w) = | B(w)|* + | Li(w) || Lo(2w)|*  (13)

Since B(w) is bandpass, and the L /(w) are low-pass, S(w)
has a low-pass characteristic. Therefore, a high-pass residue
band must be computed by convolving with the filter

R(w) =1 - ().

Alternatively, the original image can be initially upsampled
to eliminate all frequency components that would be passed
by R(w).

In order to cascade the system recursively, we must be
able to replace some portion of the diagram with the entire
system. We therefore require that S(w) = | Ly(w)|?, thus
allowing the diagram to be recursively cascaded as illustrated
in Fig. 11. The resulting constraint on the bandpass filter
B(w) is

| Lo(@) |* = | B(w) | + [ L()|*| Lo(2@) |*.

(14)

This recursion contraint is used in the design of the radial
filters.

One other constraint on the radial filter design is that the
subsampling operation should not introduce significant alias-
ing in the low-pass branch. It would seem that this constrains
the low-pass filter L (w) to have strictly zero response above
w = 7 /2. In practice, the restriction is less severe. The
lowpass filter Ly(w) that follows the subsampling operation
removes most aliased components, which are high frequency
in the subsampled domain. Therefore, we used a seven-tap
binomial low-pass filter that is fairly gentle in the frequency
domain: /,[n] = 1/64 - [1,6, 15,20, 15,6, 1].

We also have freedom to choose the Lg(w) filter, or
equivalently, the system response S(w). Since it represents
the lowpass response of the overall system, we require that it
be unity from O to x /2 radians, and zero at w = 7. Using
the Parks-McClellan algorithm, we constructed the 13-tap
filter that best meets these criteria.

Having specified the two lowpass filters, the bandpass filter
is constrained by the recursion relation given in (14). We
designed a symmetric 15-tap bandpass filter that minimizes
the maximum error amplitude. We used a simplex algorithm
[38] to search the eight-dimensional space of free parameters.
The result is the bandpass filter response shown in Fig. 13(a).
The maximum power deviation from the desired frequency
response is roughly 3.5 percent.

B. Angular Frequency Component Design

We chose an angular frequency response H(6) =
jcos3(8). This can be expressed in terms of sinusoidal har-
monics through use of a standard trigonometric identity:

1 3
cos*(6) = 7 o8 (36) + 7 o (6).
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Fig. 9.

)

Hlustration of the structure of the steerable pyramid. (a) Filter kernels nsed to construct the pyramid. These four filters,

which are rotated versions of a common filter, span the space of all rotations of that common filter. (b) Test image. (c) Low-pass
coefficient image in the pyramid representation of the test image. (d)-(f) Bandpass coefficient images in pyramid representation.

bALY

i

(@)

y,in)

H

Fig. 10. TIllustration of the design constraint for the radial component of a
steerable, seif-inverting pyramid. The impulse response of the entire system
(shown at the top) equals the power spectrum of the filter Ly(w). This allows
us to cascade the system recursively, as illustrated in Fig. 11, to create a
multiscale transform.

Then the number of angular basis functions required for
shiftability and the interpolation functions are determined by
(5). Solving for this case gives the exact interpolation func-
tions,

b,(0) = %[2(}05 (6 — nA,) + 2cos (3(6 — na,))] (15)

where Ay = 7w /4, ne {0, 1,2,3}.

One-dimensional plots of the angular Fourier components
of the four angular basis functions, and their power spectra,
are shown in Fig. 12. A linear combination of the four basis
functions in Fig. 12(a) can synthesize an arbitrary angular

translation of the cos>(#) kernel.

Fig. 11. Illustration of a two-stage recursive cascade of the system shown

in Fig. 10.

For some applications, we need to employ quadrature pairs
of filters that have the same frequency response but differ in
phase by /2 radians (i.e., pairs of filters that are Hilbert
transforms of each other [4]). Since the cos?(f) frequency
response is odd-symmetric, its Hilbert transform is
|cos(8) |. To make a steerable set of the quadrature comple-
ments of the bandpass filters, we use the first three terms in a
Fourier expansion of the Hilbert transform:

|cos?(0)| = 0.4244 + 0.5093 cos (26) + 0.0727 cos (46).

(16)

This angular function requires five basis functions for shifta-
bility. We note that since the power spectra of both filters of
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Fig. 12. (a) Set of four basis functions of the form cos*(§ — nay), plotted
from 0 to 2 7. This set of basis functions is sufficient to synthesize cos*(§ —
8,), for any 8,. (b) Basis function power as a function of angle.

}
|
IS

the quadrature pair are identical, either set of filters can be
used in the implementation of the pyramid.

C. Two-dimensional Filter Design

Using the frequency transformation method [26], we con-
verted the one-dimensional radial filters into two-dimensional
filters. Fig. 13(b) shows the two-dimensional bandpass filter.
The frequency transformation method produces two-dimen-
sional filters with only approximate circular symmetry, but
the approximation is quite accurate over the passband of our
filters.

To construct a set of oriented filters, we subdivide the
annular bandpass spectrum into orientation subbands. The
angular variation is sufficiently slow to use the frequency
sampling method [33]. We computed the Fourier transform
of the bandpass kernel, multiplied by the four desired angular
responses, cos>(§ — nA,), and computed the inverse Fourier
transform to obtain the basis filter impulse responses. Fig.
13(c)-(f) show the frequency responses of the bandpass
filters.

We can now see that the steerable pyramid transform is
(approximately) self-inverting over the lowpass range of ra-
dial frequencies w, € [0, m/2]. When applying the oriented
filters in two dimensions, the convolution results are not

spatially subsampled. These subbands are therefore spatially
shiftable. The low-pass radial filters were designed to prevent
aliasing, and so the subsampled low-pass signal is also spa-
tially shiftable. In the frequency domain, both the angular
and radial component designs ensure that the sum of squares
of the basis functions is constant with respect to orientation
and over the relavant range of scales (i.e., over the passband
of Ly(w)). Therefore, by Proposition 4, the pyramid is self-
inverting.

V1. IMAGE PROCESSING APPLICATIONS

Since the steerable pyramid is jointly shiftable in orienta-
tion and position, one can perform useful image analysis and
manipulation directly on the transform representation. In
[15], the steerable pyramid representation was used to infer
surface shape from image intensities (known as the ‘‘shape-
from-shading’’ problem). Here, we demonstrate its use in
two more applications.

A. Stereo Matching

In the stereo matching problem, the visual system is con-
fronted with two views of a scene from differing positions
(left and right eyes). The task is to find the relative horizontal
displacement between corresponding points in the images.
This displacement is inversely proportional to the distance to
the point in the three-dimensional world, and so may be used
to recover a ‘‘depth map’’ for the image. Because matching
is simplest when there are small displacements between the
two images, it is common to apply stereo matching algo-
rithms within a multiresolution representation. The matching
is first performed at coarse spatial scales, where all displace-
ments are small relative to the distance between pixels, and
the results are then used as initial estimates for progressively
finer spatial scales. Thus, at each stage of the computation,
the matcher operates on measurements at the current scale,
and estimates from the previous scales.

Since the steerable pyramid is a multi-scale representation,
it may be used to implement a coarse-to-fine disparity estima-
tor. More importantly, the spatial shiftability of the subbands
allows accurate displacement estimation directly from the
subband coefficients. Without the spatial shiftability property,
a uniform translation of both images would transfer coeffi-
cient energy into other orientation and frequency (scale)
bands. Thus a disparity estimator operating on a subband
would be affected by the absolute spatial positions of the
images.

Fig. 14 shows an example. Fig. 14(a) shows the left and
right eye views of a random dot stereogram [21]. A central
rectangle of dots is displaced horizontally by one pixel be-
tween the left and right eye views. Fig. 14(b) shows an
overlaid plot of cross-sections of the same horizontal line of
the two images; (c) shows a surface plot of the depth map -
corresponding to this stereo pair.

We used this test stimulus to compare the performance of
the steerable pyramid and a wavelet image representation in
stereo matching. We compare the disparity estimates after
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(e) ()

Fig. 13. Frequency domain filter response plots, illustrating design procedure for digital steerable filter. (a) Desired radial
frequency distribution, plotted from O to =. (b) Desired angularly symmetric two-dimensonal frequency response, obtained through
frequency transformation. The profile in (b) was multiplied by the desired cos*( — nA,) angular frequency responses and inverse
transformed to yield the steerable basis set. (c)-(f) Imaginary component of the frequency responses of the resulting steerable
filters.

one stage in a coarse-to-fine algorithm (i.e., we compute minimizes the squared-error function:

stereo disparity at a single spatial scale). d d\1?
We use a least-squares gradient-based displacement estima- E(d) = 3 [ I ( X+ —) -1, ( X - — )} ,
tor similar to that used by Lucas and Kanade [27]. This is xeP 2

based on a locally planar model of the image. For each patch  where I,(x) and 7,(x) are the left and right images, and d is
P of the image, it computes the image displacement that the disparity at the center of patch P. Approximating the
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Fig. 14. (a) Left and right eye views of a random dot stereogram. The two images are identical, except that a central rectangular
portion is displaced by I pixel between views. (b) Overlaid plots of the left half of a horizontal scan line from each stereo image. (c)
Surface plot of the corresponding depth map. (d) Reconstruction of one subband of a wavelet representation of each of the stereo
images. (e) Overlaid plots of the left half of a horizontal scan line from each wavelet subband. (f) Surface plot of the depth map
recovered by applying the stereo matching algorithm to the wavelet subbands.
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(h)

Fig. 14.

(8)

603

(g) Reconstruction of one subband of a steerable pyramid representation of each of the stereo images. (h) Overlaid plots

of the left half of a horizontal scan line from each pyramid subband. (i) Surface plot of the depth map recovered by applying the

stereo matching algorithm to the steerable pyramid subbands.

displaced images with a first-order Taylor expansion and
solving for the minimum-error estimate gives

al(x)
R
al(x) 1°
,gp[ ax ]

where I(x) is the pointwise average of the two images. In
our example, we used a patch size of nine pixels, weighted
by a gaussian profile.

The steerable pyramid coefficients corresponding to a sin-
gle orientation and scale, are shown in Fig. 14(g). Fig. 14(h)
shows graphs of the left half of the corresponding horizontal
cross-sections. The left portions of the cross-sections are
identical. Since the subbands are not aliased, the right por-
tions of the two cross-sections are approximately translations
of each other (if we had interpolated them using the correct
interpolator, they would be exact translations). Use of the
Lucas and Kanade algorithm on these subbands produces a
good estimate of disparity. The resulting depth map is shown
in Fig. 14().

Fig. 14(d) shows the Daubechies four-tap wavelet repre-
sentation of the stereo pair reconstructed from a single sub-
band chosen to match that used in the steerable pyramid
example. Fig. 14(e) shows the left half of the corresponding
plots of horizontal cross-sections. Note that the right portions
of the two cross-sections are nof related by translation. As in

the example of Fig. 1, translation of the input signal causes
an exchange of power amongst the subbands, and this alias-
ing in the representation produces large errors in the disparity
estimates. The resulting depth estimate is poor, as can be
seen in Fig. 14(f).

We emphasize that the choice of a different displacement
estimation technique, such as correlation, will not solve this
problem: the aliasing in the subbands causes an irreversible
loss of information. One could apply a low-pass filter to each
subband to eliminate those frequencies that are contaminated
by aliasing, but this would leave gaps in the spectrum which
would be ignored by the estimator. An input signal with
significant spectral content in these gaps (and not elsewhere)
could not be processed.

B. Image Enhancement

A common problem in image processing is to restore an
image that has been corrupted by noise. Through the use of
an image transform, one can decompose the image into a set
of coefficients that allow discrimination between image infor-
mation and noise. These coefficients can be modified accord-
ing to the likelihood that they represent signal rather than
noise. The ‘‘cleaned’’ image can then be constructed by
inverting the transform. (e.g., [37], [23], [6]).

Natural images tend to contain locally oriented structures
such as lines, edges, and textures, while noise tends to be
isotropic (i.e., without preferred orientation). Therefore, an
image decomposition based on oriented filters should help
one to determine whether a given image structure is due to
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(d)

Fig. 15. Noise removal example. Figures on the right are enlarged portions of those on the left. (a) Original noise-free image. (b)
Image corrupted by noise. SNR is 12.42 dB. (c) Results of image restoration using steerable pyramid. SNR is 23.0 dB. (d) Results
of image restoration using a Wiener filter (see text). SNR is 19.24 dB.
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image or noise, and should allow one to enhance the image
quality (cf. [23]). For these reasons, the steerable pyramid
representation described in the previous section is well-suited
for image enhancement. Shiftability in orientation and space
allow all orientations and positions to be treated uniformly.
The multi-scale nature of the representation allows the pro-
cessing to depend on the spatial frequency band.

We want to preserve the contents of the image representa-
tion that correspond to visually significant oriented structures
in the image. These structures may appear at any relative
phase: even-phase (lines), odd-phase (edges), or contours of
intermediate phase. A local ‘‘oriented energy’’ measure,
formed by the sum of squares of a quadrature pair of even-
and odd-phase filters, will treat structures of different phases
uniformly (cf. [36]). Thus, we construct two steerable pyra-
mids, one using odd-symmetric filters, and the other using
their even-symmetric Hilbert transform counterparts, and use
the sum of squares of the coefficients at each position,
orientation and scale to measure orientation strength.

We use this oriented energy measure to determine the
appropriate modification of the coefficients in one of the
pyramids (although we use both of the quadrature pair of
filters to compute energy, only one is needed to reconstruct
the enhanced image). If the oriented energy is large, the
pyramid coefficient at that orientation is left unchanged;
otherwise it is be attenuated. To perform this operation, we
use a soft threshold function similar to that described in [6]:

~ i

“Clres(os(ve-ny 7

where c; is the coefficient at a particular orientation, e, is the
energy at that orientation, and S and T are sharpness and
threshold parameters that are chosen for each subband.

We use the steerability of the image representation to
ensure that the noise processing is independent of image
orientation. At each scale and position, we analytically find
the local dominant orientation from the quadrature pair of
steerable filters [15]. For the case of a single oriented struc-
ture this is the orientation which maximizes the energy
measure e;. We then steer each of the odd phase steerable
pyramid filters so that one of them is aligned with the
dominant orientation. We modify the steered coefficients
according to (17). After this modification, we steer the
coefficients back to their original orientations, and recon-
struct the image from these altered coefficients. Altering the
coefficients in a coordinate system defined by the local domi-
nant orientation ensures that the image will be processed in a
rotation-invariant manner.

Fig. 15(a) shows the original noise-free image, along with
an enlarged portion. Pixel intensity values are in the range
[30, 224]. Fig. 15(b) shows the image corrupted by white
noise uniformly distributed on the interval [—20,20]. The
SNR for this image is 12.42 dB, or 13.6 dB peak-to-peak. To
compute a noise-reduced image, we constructed two levels of
a steerable pyramid from the noisy image, and modified the
coefficients as previously described, using a sharpness pa-
rameter, S = 0.5, and a threshold, 7= 2 for the lower
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frequency band and 7 = 11 for the higher frequency band.
The same parameters were used for all orientations. These
values were roughly chosen to minimize the mean squared
error. The pyramid transform was then inverted to produce
the processed image, shown in Fig. 15(c). Very little noise
remains in the processed image, yet most important image
features are preserved. The SNR of this result.is 23.0 dB.

For comparison with the steerable pyramid algorithm, we
also restored the image using a Wiener filter. Implementation
of the Wiener filter requires estimates of the power spectra of
both the image and the noise. For the image spectrum
estimate we used the average of the power spectra of an
ensemble of eight different face images, taken under condi-
tions identical to those used for Fig. 15(a). We used a flat
power spectrum model for the noise, with amplitude equal to
the mean of the spectral power of the actual noise. Fig. 15(d)
shows the Wiener filter restoration result, with a SNR of
19.24 dB. While this value is only moderately lower than that
of the steerable pyramid method, the visual appearance of the
restored image is both noisier and more blurred than the
steerable pyramid result.

VII. CoNCLUSION

The recent development of wavelet transforms has gener-
ated enthusiasm and controversy in a broad range of disci-
plines. The defining property of these transforms is that the
basis functions are dilations and translations of a common
kernel (in two dimensions, we add rotations to this list). Two
secondary properties of typical wavelet transforms are that
they are orthogonal, and they may be implemented using
recursive pyramid structures. Their representational and
computational structure makes them suitable for efficient
signal and image coding. We have argued, however, that the
aliasing that results from the critical sampling constraint (as
required by orthogonality) is often problematic for applica-
tions in signal or image analysis.

In the spatial domain, one would like an image representa-
tion to treat its input in a uniform manner, regardless of the
relative alignment of the input and the transform sampling
lattices. No subsampled subband transform can be translation
invariant, in the strong sense that the transformation operator
commutes with the translation operator. But is is possible to
generate transforms in which the information (and the power)
contained within a given subband is invariant to translations
of the input signal. Such transforms must generally be over-
sampled; the Nyquist criterion specifies the necessary sam-
pling rate.

We have developed analogous concepts in the context of
orientation analysis. It is possible to devise ‘‘steerable’
image representations in which the power in the coefficients
corresponding to different orientations (at the same scale and
position) is invariant to rotations of the input signal. The
concept of steerability has been explored in prior work; here
we have demonstrated that is is essentially equivalent to the
translation invariance issue of the spatial domain.

We also discussed transforms that are ‘‘scalable,”” in that
measurements at any scale can be derived from those at a
discrete set of scales. The scalable representations require



that we take our space-domain concepts and re-state them in
the log frequency domain.

We have formalized a generalization of these properties
which we call ‘‘shiftability’’. We showed that shiftability is
equivalent to the invariance of the transform power to input
signal translation (Proposition 2), and that a sub-property of
shiftability is that the sum of squares of the basis functions is
constant (Corollary 1). We discussed the property of self-
invertibility and showed that this property holds for trans-
forms that are shiftable in space and have flat basis function
power in the frequency domain (proposition 4). We also
discussed the issue of joint shiftability.

We have demonstrated these ideas by designing one trans-
form that is jointly shiftable in space and orientation (a
“‘steerable pyramid’’), and another that is jointly shiftable in
space and scale. Although these transforms are less efficient
that critically sampled representations, we feel that for many
applications, the benefits of shiftability are worth the cost.
We demonstrate advantages of the transforms by applying
them to the problems of stereo matching, scale-space analy-
sis, and image enhancement.

There are open issues remaining. The relationship of the
shiftability property to the mathematics of groups could be
explored. A measure of joint shiftability might be used in
place of Gabor’s joint localization constraint to develop ap-
proximately jointly shiftable transforms for a given sampling
structure. The practical problems in the design of scalable
transforms should be investigated further. In particular, it is
of interest to construct a scalable transform that is efficiently
implemented as a recursive pyramid. Finally, the shiftability
concept could be extended to other domains such as time and
color.
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